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An analytical procedure based on the method of superposition is described for obtaining
the free vibration frequencies and mode shapes of partially clamped cantilevered
rectangular plates with and without rigid point supports. The supports are of the type
provided by bolts with stand-offs. Good agreement is obtained when computed results are
compared with those obtained experimentally. While the solution to this problem is of
general interest it is of particular interest to people working in the design of electronic
circuit boards.
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1. INTRODUCTION

It is well known that the subject of free vibration analysis of rectangular plates with mixed
boundary conditions is one that has received little attention over the years. By ‘‘mixed
boundary conditions’’ one refers to situations where there are discontinuities in the type
of support supplied to one or more of the plate edges. A typical example of such edge
support, and one that is encountered here, involves a plate with clamping part way along
an edge, the remainder of the edge being free.

In this paper one begins by examining the free vibration frequencies and mode shapes
of a thin rectangular plate with three entirely free edges, the remaining edge being clamped
continuously throughout a region beginning at one corner and extending part way along
the boundary. The remainder of this edge is free support. It is for this reason such a plate
is referred to as a ‘‘partially clamped cantilever plate’’.

Plates with this type of edge support are sometimes employed as electronic circuit boards
in the electronic industry. It is also known that such plates are sometimes given further
lateral support by means of what are referred to as ‘‘bolts and stand-offs’’. This lateral
support is usually supplied by a bolt which on one end is attached to a rigid base. The
bolt also passes through the thin plate and by means of a threaded nut and hollow
cylindrical spacer imparts rigid support to the plate in the immediate region. Such support
is referred to herein as ‘‘rigid point support’’. The principal objective of this paper is to
demonstrate how accurate analytical type solutions can be obtained for the partially
clamped plate both with, and without additional point support from bolts and standoffs.
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A number of experimental tests have been conducted in order to permit comparison
between theory and experiment. It will be obvious that the fundamental and other
frequencies of such plates will be highly dependent on the location of the bolt-standoff
supports.

2. ANALYTICAL PROCEDURE

2.1.     

Two steps are to be accomplished in the analytical procedure. The first is to obtain a
solution for the partially clamped plate. The second step involves incorporating the effects
of rigid point supports on the plate behaviour.

An analytical type solution is obtained for the entire problem by superimposing a set
of judiciously chosen rectangular plate forced vibration solutions. Unknown coefficients
appearing in the superimposed set are constrained in such a manner that all of the
prescribed boundary conditions are satisfied. Prescribed displacement conditions in the
region of the rigid body support are also satisfied. In the study described here only one
rigid point support is considered to act. It will be seen that incorporating the effects of
additional point supports is easily taken care of. One wishes to prepare a general analysis
capable of handling the plate problem shown schematically in Figure 1.

Consider the nine rectangular plate forced vibration problems (building blocks) of
Figure 2. Only the solution for the first building block will be provided in detail. All of
the non-driven edges of the building blocks are given slip–shear support, indicated by two
small circles adjacent to the edges. Along such edges vertical edge reaction, and slope taken
normal to the edge, are everywhere zero.

The driven edge, h=1, of the first building block is free of bending moment. To begin,
one considers this edge to be driven by a concentrated harmonic lateral force of circular
frequency v located a dimensionless distance z along the edge. The dimensionless
amplitude of this driving force is represented by a Dirac delta function as indicated in the
figure. This function is expanded in a cosine series as

V(j)b3

aD
= s

k

m=0,1

2V0

dm
cos mpz cos mpj, (1)

Figure 1. Partially clamped cantilever plate with bolt and stand-off.
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Figure 2. Nine building blocks utilized in analysing partially clamped rectangular plates with single point
support.

where dm =2, for m=0; dm =1, for m$ 0, and V0 is the dimensionless harmonic force
amplitude.

The response of the plate to this driving force can be expressed in the form proposed
by Lévy as

W(j, h)= s
k

m=0,1

Ym (h) cos mpj. (2)

Upon substituting Equation (2) into the governing differential equation it is found that
Ym (h) may be expressed as, for l2 q (mp)2,

Ym (h)=Am cosh bmh+Bm sinh bmh+Cm cos gmh+Dm sin gmh. (3)

And, for l2 Q (mp)2,

Ym (h)=Am cosh bmh+Bm sinh bmh+Cm cosh gmh+Dm sin gmh, (4)

where Am , Bm , etc., are constants to be determined, Bm =fzl2 + (mp)2,

gm =fzl2 − (mp)2 or fz(mp)2 − l2, whichever is real. The vertical edge reaction can



. .   . . 184

also be written as

V(j)b3

aD
=−$13W(j, h)

1n3 + n*f2 13W(j, h)
1h1j2 %bh=1

. (5)

Enforcing the set of four boundary conditions, including the equality of the right hand
sides of equations (1) and (5), we readily obtain, for l2 q (mp)2,

Ym (h)=Am [cosh bmh+ u1m cos gmh] (6)

with

Am =(−2V0/dm )(cos mpz/u11m ). (7)

And, for l2 Q (mp)2,

Ym (h)=Am [cosh bmh+ u2m cosh gmh], (8)

where

Am =(−2V0/dm )(cos mpz/u22m ), (9)

u1m =
[b2

m − nf2(mp)2] cosh bm

[g2
m + nf2(mp)2] cos gm

, u2m =
−[b2

m − nf2(mp)2] cosh bm

[g2
m − nf2(mp)2] cosh gm

, (10, 11)

u11m = bm [b2
m − n*f2(mp)2] sinh bm + u1mgm [g2

m − n*f2(mp)2] sin gm (12)

and

u22m = bm [b2
m − n*f2(mp)2] sinh bm + u2mgm [g2

m − n*f2(mp)2] sinh gm . (13)

Achievement of the above solution constitutes an intermediate step in obtaining a solution
for the first building block.

Let the total edge reaction along the driven edge of the first building block, in the interval
0E jE a, be expanded in series form as

V(j)b3

aD
= s

kL

j=0,1

Ej cos
jpz

a
. (14)

Beyond this region, (jq a), edge reaction is zero.
The distributed reaction is represented schematically by the broken line in the figure.

Then, utilizing the process of integration to obtain the resultant values for the quantities,
Am , of equations (7) and (9), one has, for l2 q (mp)2,

Am =
−2
dm

s
kL

j=0,1

Ej

u11m g
a

0

cos
jpz

a
cos mpz dz (15)

and, for l2 Q (mp)2,

Am =
−2
dm

s
kL

j=0,1

Ej

u22m g
a

0

cos
jpz

a
cos mpz dz. (16)
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Introducing the symbol fjm, where

fjm =g
a

0

cos
jpz

a
cos mpz dz, (17)

equations (15) and (16) may be written as

Am =
−2
dm

s
a

j=0,1

Ej

u11m
fjm, Am =

−2
dm

s
a

j=0,1

Ej

u22m
fjm. (18, 19)

It will be noted that the quantity fjm is a function of a, j and m, only. It can easily be
called by a computer algorithm.

With the values of Am established as functions of the expansion coefficients Ej , the exact
response of the first building block to a driving edge force distributed over the region
0E jE a, and zero everywhere else, is known. It should be noted that even though one
chooses a value kL for the number of driving coefficients describing the driven edge force
distribution (equation (14)) one need not restrict the number of terms k in the series
describing the lateral displacement of the first and second building blocks (equation (2))
to this level. In fact it was found wise to choose kL such that it is always greater than k
divided by a. In this way the wave density in the response will be at least as high as the
wave density in the distributed driving force. The second building block differs from the
first only in that its driven edge is free of vertical edge reaction, but over the interval
0E jE a it is driven by a distributed bending moment. The bending moment distribution
may be expressed as

M(j)b2

aD
= s

kL

j=0,1

Fj cos
jpz

a
. (20)

A solution for this second building block is obtained in terms of the driving coefficient
Fj in a manner identical to that followed for the first building block.

The third building block is driven by a bending moment distributed all along the edge,
h=1. This edge is free of vertical edge reaction and the distribution of the moment
amplitude is expressed in series form as

Mb2

aD
= s

k

m=0,1

Gm cos mpj. (21)

It is very easy to obtain a solution for the response in terms of driving coefficients, Gm .
The solution is taken in the form given by equation (2). The obtaining of solutions for
this building block, and the next three building blocks is described in reference [1].

Solutions for the fourth, fifth and sixth building blocks are extracted from the above
solution for the third building block. To extract a solution for the fifth building block one
needs only replace the co-ordinate h of the above solution by the quantity 1− h. To extract
the fourth building block solution from the third, one needs only interchange the
co-ordinates j and h and replace the aspect ratio f with its inverse. One must recall that
the eigenvalue is still non-dimensionalized with respect to edge length a. Building blocks
seven and eight are driven by concentrated harmonic forces of dimensionless amplitude
P*1 and P*2 , and circular frequency v at locations, j=0, and j= a, respectively, along
their driven edges. These driven edges are also free of bending moment. Their solutions
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are already available as they correspond to the intermediate solution obtained for the first
building block.

Finally, one turns to the ninth building block. It has slip–shear conditions along all edges
and is driven by a concentrated harmonic force of dimensionless amplitude P*3 and circular
frequency v at co-ordinates u, v. A solution for this building block is obtained following
established procedures. The block is divided into two segments as indicated in the figure.
A solution for each segment is taken separately utilizing the co-ordinate systems shown.
Both solutions are expressed in the form of equation (2). The concentrated force amplitude
is represented by a Dirac function which in turn is expanded in a series identical to that
of equation (2). Enforcing boundary conditions at h=0, and conditions of continuity of
displacement, slope, and bending moment, across the common segment boundary provides
seven equations relating the eight unknowns. A final equation is based on equilibrium
between the driving force and the vertical edge reactions of the two segments along their
common boundary. One is thus able to express the response of the entire plate in terms
of the amplitude of the harmonic driving force [2].

2.2.    

An eigenvalue matrix is shown schematically in Figure 3. It corresponds to the type of
matrix one would arrive at when utilizing three term expansions for the displacement of
each building block (equation (2)), and applying for the present only one harmonic force
at the support point. Several steps are required to arrive at this matrix. First, all nine
building blocks are considered to be superimposed, one-upon-the-other. Since each term
in each building block solution satisfies exactly the governing differential equation, the

Figure 3. Schematic representation of eigenvalue matrix utilized in analysing partially clamped rectangular plate
with single point support; displacements represented by three-term series.
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combined set will also satisfy it. One needs only constrain the constants appearing in the
combined solution so as to satisfy all prescribed boundary conditions.

The first step in setting up the eigenvalue matrix is to enforce the condition of zero lateral
displacement along the edge, h=1, in the region 0E jE a. This is because a represents
the extent of edge clamping. Toward this end one expands in a Fourier series, the
contributions of all building blocks toward displacement in this region. A series of the type
utilized in equation (14) was utilized here. One then demands that each net coefficient in
this new series must equal zero. If k terms are utilized in the building block series solutions
then k terms are utilized in this boundary series as well.

For illustrative purposes the matrix of Figure 3 was based on three-term expansions of
the solutions. One therefore obtains three linear homogenous algebraic equations relating
the unknown driving coefficients of the building blocks. This set of three equations is
represented by the first three rows of the matrix of Figure 3.

Three more equations are obtained by enforcing the conditions of zero slope in the
clamped region following identical steps. A further three equations are obtained by
requiring that the contributions to bending moment along the edge, h=1, of building
blocks 3 through 9 must equal zero. Requirement that net contributions of all building
blocks toward bending moments along the edges, j=1, h=0, and j=0, must vanish,
leads to nine further equations.

It is recognized that discontinuities in twisting moment at the extremities of the clamped
region may lead to the existence of point forces at these extremities. For this reason
building blocks seven and eight have been introduced. Two more equations are obtained
when one requires that net displacement, at the point of application of the forces of these
two building blocks, must vanish.

Finally, one turns to the ninth building block and requires that net displacement must
equal zero at the co-ordinate u, v. The set of homogenous algebraic equation related to
a partially clamped plate with one lateral point support was then described. The eigenvalue
matrix for the problem is, in fact, the coefficient matrix for this set of equations.
Eigenvalues are obtained by searching for those values of the parameter l2 for which the
determinant of the eigenvalue matrix vanishes. Mode shapes are then obtained following
standard procedures.

In the problem under study here one wishes to simulate the type of support the plate
receives from a bolt with circular washer and cylindrical stand-off. Experience has shown
that such support can be closely modelled by utilizing four discrete point supports of the
type discussed above [2]. One point support is located at each extremity of two mutually
perpendicular diameters running across the washer and parallel to one of the two plate
edge directions. This is the manner in which bolt and stand-off support is modelled here.

3. COMPARISON OF COMPUTED AND EXPERIMENTAL RESULTS

The primary objective of the experimental work reported here is to verify the analysis
presented above for the free vibration of partially clamped plates with, and without, rigid
point supports.

3.1.       

It will be obvious that analytical studies of the free vibration frequencies and mode
shapes for this family of plates can be conducted utilizing the building blocks of Figure 2
with building blocks related to rigid point support deleted. The last column of the
eigenvalue matrix of Figure 3 will, of course, also be deleted. It will be appreciated that
the analysis described here is not required in the classical case of a cantilever plate (a=1).
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T 1

Analytical and experimental resonant frequencies (Hz) for partially clamped square plate
(10×10) (experimental results in brackets)

a
ZxxxxxxxxxxxxxxxCxxxxxxxxxxxxxxxV

0·25 0·50 0·75
Mode number ZxxxCxxxV ZxxxCxxxV ZxxxCxxxV

1 11·6 (10·8) 16·3 (15·7) 19·5 (18·9)
2 25·6 (24·7) 36·0 (35·0) 45·4 (41·8)
3 64·6 (63·6) 82·0 (81·2) 113·4 (106·8)
4 129·6 (127·9) 138·6 (137·0) 158·2 (155·8)
5 146·0 (145·8) 158·1 (157·9) 166·1 (161·2)
6 188·0 (183·7) 201·8 (199·1) 260·1 (253·4)

T 2

Analytical and experimental resonant frequencies (Hz) for partially clamped rectangular
plate (10×15) (experimental results in brackets)

a
ZxxxxxxxxxxxxxxxCxxxxxxxxxxxxxxxV

0·25 0·50 0·75
Mode number ZxxxCxxxV ZxxxCxxxV ZxxxCxxxV

1 8·4 (8·2) 13·9 (13·4) 19·0 (18·6)
2 17·8 (17·6) 24·5 (23·6) 32·7 (32·6)
3 43·7 (41·4) 51·9 (49·1) 73·9 (78·0)
4 71·5 (71·2) 86·4 (83·5) 108·5 (105·7)
5 115·9 (114·8) 129·5 (130·4) 136·5 (136·7)
6 137·8 (136·6) 160·2 (156·2) 182·4 (183·9)

Eigenvalues for this classical problem are well known and tabulated in the literature [1].
The reader will find both experimental frequencies, and computed frequencies based on
these classical eigenvalues of cantilever plates tabulated in the literature [3].

Experiments were conducted on two partially clamped aluminum plates of
10·0 in×10·0 in (25·4 cm×25·4 cm), and 10·0 in×15·0 in (25·4 cm×38·1 cm),
respectively. Both plates were of 0·0615 in thickness (1·56 mm). Dimensionless clamping
distances a were 0·25, 0·50 and 0·75. Resonant frequencies and the associated mode shapes
for each plate were experimentally determined for the first six modes. The method of
impact testing (roving hammer) was adopted. Only one accelerometer (type Endevco
2222C) was used; it was fixed at one suitable location, which was non-nodal for the first
six modes. Since the weight of the accelerometer was only 0·5 g, the mass loading effect
was negligible. The impact hammer was moved from one measurement point to another.
Several measurement point locations were chosen in order to identify the mode shapes.
For each point, a frequency–response function was obtained from the average of five
impacts.

In Table 1 theoretical and experimental frequencies are presented for the first six modes
of a partially clamped 10·0 in×10·0 in aluminum plate. Values of a vary from 0·25 to
0·75 in intervals of 0·25. Experimental results are given in brackets. With the exception
of the first mode frequency for the case a=0·25, it is found that discrepancy between
experiment and theory is equal or less than 3.5%. This is considered to constitute good
agreement in tests of this type. It is found that all discrepancies are positive, i.e., the
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theoretical frequencies are slightly higher than those measured experimentally. It is known
that when testing cantilevered plates experimentally, great caution must be taken to ensure
that a truly clamped condition is achieved. Any deviation from this ideal condition will
result in a slight lowering of measured frequencies. It is also known that measured plate
vibration frequencies are very sensitive to variations in plate thickness and flatness.

Figure 4. Computed and experimentally measured mode shapes for the first six modes of the plate of Table 2,
with a=0·5: (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4, (e) mode 5, and (f) mode 6.
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T 3

Analytical and experimental resonant frequencies (Hz) for partially
clamped (a=0·75) rectangular plate (10×15) with rigid point

support

Mode Number Analytical Experimental

1 31·2 30·6
2 87·2 80·2
3 106·2 103·7
4 139·3 131·5
5 189·1 184·0

Furthermore, the actual plate properties; thickness, density, Young’s modulus, and
Poisson ratio, may differ slightly from those employed in the calculations.

In Table 2 theoretical and experimentally measured frequencies are presented for an
aluminum plate similar to that to which the data of Table 1 pertains except that the plate
is of dimensions 10·0 in×15·0 in (25·4 cm×38·1 cm) with partial clamping along the
long edge. Both theoretical and experimental results are presented for the first six modes
with a varying from 0·25 to 0·75 in intervals of 0·25.

It will be noted that agreement between theory and experiment is quite good. With the
exception of the third mode the discrepancy between the two sets of results is generally
within about 2.5%. Factors which can sometimes contribute to such discrepancies are
difficulties in achieving idealized clamped conditions in the experimental set-up, as
discussed earlier, as well as slight deviations from true isotropy in the rolled aluminum
sheet. In both tables, as the parameter a increases the frequencies approach those of the
fully clamped cantilever plate. The experimental results indicate that the analysis can be
used with a high degree of confidence for design purposes.

Experimentally measured mode shapes for the first six modes of the plate of Table 2,
with a=0·5, are presented in Figure 4(a). The same family of mode shapes generated by
the theoretical analysis are presented in Figure 4(b). A comparison of these two sets of
mode shapes reveals a very good agreement. Ability to predict accurately these mode
shapes is highly significant to circuit board designers who wish to locate electronic
components in regions of low amplitude vibration. They will also wish to attach circuitry
to regions of the board with low dynamic surface strain in order to avoid fatigue failure.

3.2.       

Experimental tests were conducted on one partially clamped 10·0 in by 15·0 in aluminum
plate of 0·0625 in thickness. The dimensionless clamping distance a was 0·75 along the long
edge of the plate. Rigid point support was provided at co-ordinates, 13·7 in, 1·0 in

T 4

Analytical and experimental resonant frequencies (Hz) for partially
clamped (a=0·5) rectangular plate (10×15) with rigid point support

Mode Number Analytical Experimental

1 30·15 28·5
2 54·7 52·8
3 84·9 80·4
4 134·2 128·0
5 176·6 171·1
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(u=13·7/15·0, n=1·0/10·0; Figure 1). In Table 3 theoretical and experimental frequencies
are presented for the first five modes of the plate. It will be noted that fundamental mode
theoretical and experimental frequencies are in very close agreement. Good agreement is
also encountered for the higher modes where the difference between the theoretical and
experimental frequencies is less than 5%. Results of a further theoretical and experimental
study are presented in Table 4. These latter results differ from those of Table 3 only in
that they were obtained with a value of a=0·5. The agreement between experiment and
theory is about equivalent to that encountered with the data of Table 3.

4. DISCUSSION AND CONCLUSIONS

The superposition method is found to be highly applicable for free vibration analysis
of plates with the types of support discussed here. While the solutions should be of general
interest it is known that they have application in the vibration analysis of electronic circuit
boards. It will be obvious to the reader that the effects of any number of rigid point
supports could be incorporated into the analysis. Each additional support will simply add
four additional rows and columns to the eigenvalue matrix. There is no doubt that the
analysis could be extended to handle problems with further complications. Examples of
such problems would be those where elasticity is entered into the plate edge support [4].
Further complications that could easily be taken care of are the effects of local attached
masses distributed over the plate surface. All of these problems are amenable to solution
by following the mathematical procedure described here.
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APPENDIX: NOMENCLATURE

a,b dimensions of plate
D plate flexural rigidity
kL number of terms used in series representation of driving forces and moments in clamped

region
k number of terms utilized to represent Dirac function expansions and building block

responses
M amplitude of applied bending moment
Mb2/aD dimensionless bending moment
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P amplitude of concentrated force
P* dimensionless concentrated force amplitude=−2Pb3/Da2

u,v spatial co-ordinates of concentrated forces divided by a and b, respectively
V plate vertical edge reaction
Vb3/aD dimensionless vertical edge reaction
V0 amplitude of dimensionless concentrated edge force
W plate lateral displacement
j,h distance in co-ordinate directions divided by a, and b, respectively
z distance in co-ordinate direction divided by edge length a
a length of edge clamping divided by edge length a
f plate aspect ratio= b/a
v circular frequency of plate vibration
r mass of plate per unit area
l2 plate free vibration eigenvalue (va2zr/D)
n Poisson ratio
n* 2− n


